YOLO26改进 – C3k2 C3k2融合FDConv频率动态卷积:空间-频域协同调制增强细节捕获,提升小目标与边界模糊目标检出 CVPR 2025
# 前言
本文提出新型频率动态卷积(FDConv),旨在解决传统动态卷积权重频率响应相似、参数开销大且适应性有限的问题。FDConv通过在傅里叶域学习固定参数预算,将其划分为基于频率的分组,构建频率多样化的权重。同时设计了核空间调制(KSM)和频段调制(FBM),分别在空间和频率域提升适应性。大量实验表明,FDConv应用于ResNet - 50时,仅增360万参数就能实现更优性能。我们将FDConv集成进YOLO26,替换部分模块,在目标检测、分割和分类任务中验证了其有效性,为现代视觉任务提供灵活高效的解决方案。
文章目录: YOLO26改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLO26改进专栏
介绍

摘要
尽管动态卷积(DY-Conv)通过“多组并行权重+注意力机制”实现自适应权重选择,展现出良好性能,但这些权重的频率响应往往高度相似,导致参数开销大而适应性有限。在本文中,我们提出一种新型频率动态卷积(FDConv),通过在傅里叶域学习固定参数预算来缓解这些局限性。FDConv将该预算划分为具有不相交傅里叶索引的基于频率的分组,能够在不增加参数开销的前提下构建频率多样化的权重。为进一步提升适应性,我们设计了核空间调制(KSM)和频段调制(FBM):KSM在空间层面动态调整每个滤波器的频率响应,而FBM则在频率域将权重分解为不同频段,并基于局部内容进行动态调制。我们在目标检测、分割和分类任务上开展了大量实验,验证了FDConv的有效性。结果表明,将FDConv应用于ResNet-50时,仅需小幅增加360万参数即可实现更优性能,超越了此前需要大幅增加参数预算的方法(如CondConv增加9000万参数、KW增加7650万参数)。此外,FDConv可无缝集成到多种架构中,包括ConvNeXt、Swin-Transformer,为现代视觉任务提供了灵活高效的解决方案。相关代码已公开在https://github.com/LinweiChen/FDConv。
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
FDConv是针对密集图像预测任务(目标检测、分割、分类等)设计的新型动态卷积模块,核心目标是解决传统动态卷积(DY-Conv)并行权重频率响应相似、参数冗余、适应性有限的问题。其创新点在于在傅里叶域学习固定参数预算,通过“频率分组-空间调制-频段适配”的三层设计,在不显著增加计算成本的前提下,大幅提升权重的频率多样性与自适应能力,可无缝集成到ConvNets和视觉Transformer架构中。
一、核心设计定位
1. 解决的核心痛点
传统动态卷积(如CondConv、ODConv)通过并行权重+注意力融合实现自适应,但存在两大缺陷:
- 频率冗余:并行权重的频率响应高度相似(如图1(a)),t-SNE聚类紧密(图1(c)),难以捕捉多频段特征;
- 参数低效:为提升多样性需成倍增加权重数量,导致参数暴增(如CondConv+90M、ODConv+65.1M参数),部署成本高。
2. 设计目标
- 提升频率多样性:让并行权重覆盖不同频段(低频降噪、高频捕细节),增强特征表达;
- 参数高效:维持固定参数预算,仅小幅增加参数(+3.6M),远低于传统动态卷积;
- 空间-频率协同:突破传统卷积的空间不变性,实现“频段-空间”的动态适配。
二、三大核心模块详解
FDConv的核心由三个协同模块构成,从傅里叶域到空间域、从全局到局部层层优化频率适应性:
1. 傅里叶不相交权重(FDW:Fourier Disjoint Weight)
- 核心作用:在不增加参数的前提下,生成频率响应多样化的并行权重,解决传统动态卷积权重频率同质化问题。
- 实现原理与步骤:
- 傅里叶域参数分组:将固定参数预算(与标准卷积一致)视为傅里叶域的谱系数,按傅里叶索引的L₂范数(从低到高排序)均匀划分为n个不相交分组(n可>10,远超传统动态卷积的n<10),每组对应独立频段;
- 傅里叶-空间转换:对每个分组应用逆离散傅里叶变换(iDFT),将傅里叶域的谱系数转换为空间域的权重雏形,未分配到该组的傅里叶索引设为0;
- 权重重组:将转换后的空间域特征裁剪为k×k(卷积核大小)的补丁,重组为标准卷积权重形状(k×k×C_in×C_out)。
- 关键优势:每组权重仅包含特定频段信息,不同分组权重的频率响应完全独立(图1(b)(d)),实现“参数不增、多样性倍增”。
2. 核空间调制(KSM:Kernel Spatial Modulation)
- 核心作用:对FDW生成的权重进行“逐元素微调”,解决FDW权重级融合过粗、无法适配单个滤波器频率响应的问题。
- 实现原理与结构:
- 双分支设计:
- 局部通道分支:用轻量1D卷积捕捉局部通道信息,预测稠密调制矩阵(k×k×C_in×C_out),实现每个权重元素的细粒度调整,参数开销极低;
- 全局通道分支:用全局平均池化+全连接层捕捉全局信息,预测3个维度调制值(输入通道、输出通道、核空间维度),补充局部分支的全局视野;
- 融合调制:将双分支输出相乘,得到最终调制矩阵,与FDW生成的权重进行哈达玛积(逐元素相乘),完成频率响应微调。
- 双分支设计:
- 关键优势:兼顾局部细节与全局上下文,让每个滤波器的频率响应能自适应输入特征,提升表达能力。
3. 频段调制(FBM:Frequency Band Modulation)
- 核心作用:突破传统卷积的“空间不变性”,实现“空间位置-频段”的动态适配,解决不同区域对频段需求不同的问题(如边界需高频、背景需低噪)。
- 实现原理与步骤:
- 核频段分解:将卷积核填充至特征图大小,用二进制掩码(M_b)在傅里叶域分离出B个频段(默认4个,按倍频划分:[0,1/16)、[1/16,1/8)、[1/8,1/4)、[1/4,1/2]),每个频段对应独立核权重(W_b);
- 傅里叶域卷积:利用卷积定理(空间域卷积=频率域点乘),在傅里叶域高效计算每个频段的卷积输出(Y_b),避免空间域直接分离频段的无限支持问题;
- 空间变体调制:用卷积+Sigmoid生成每个频段的空间调制图(Ab∈R^(h×w)),动态调整每个空间位置上对应频段的权重,最终融合所有频段输出:(Y=\sum{b=0}^{B-1}(A_b \odot Y_b))。
- 关键优势:可选择性增强目标边界的高频成分、抑制背景的高频噪声(图6),让频率响应适配空间变化,提升密集预测精度。
核心代码
class FDConv(nn.Conv2d):
def __init__(self,
*args,
reduction=0.0625,
kernel_num=4,
use_fdconv_if_c_gt=16, #if channel greater or equal to 16, e.g., 64, 128, 256, 512
use_fdconv_if_k_in=[1, 3], #if kernel_size in the list
use_fdconv_if_stride_in=[1], #if stride in the list
use_fbm_if_k_in=[3], #if kernel_size in the list
use_fbm_for_stride=False,
kernel_temp=1.0,
temp=None,
att_multi=2.0,
param_ratio=1,
param_reduction=1.0,
ksm_only_kernel_att=False,
att_grid=1,
use_ksm_local=True,
ksm_local_act='sigmoid',
ksm_global_act='sigmoid',
spatial_freq_decompose=False,
convert_param=True,
linear_mode=False,
fbm_cfg={
'k_list':[2, 4, 8],
'lowfreq_att':False,
'fs_feat':'feat',
'act':'sigmoid',
'spatial':'conv',
'spatial_group':1,
'spatial_kernel':3,
'init':'zero',
'global_selection':False,
},
**kwargs,
):
super().__init__(*args, **kwargs)
self.use_fdconv_if_c_gt = use_fdconv_if_c_gt
self.use_fdconv_if_k_in = use_fdconv_if_k_in
self.use_fdconv_if_stride_in = use_fdconv_if_stride_in
self.kernel_num = kernel_num
self.param_ratio = param_ratio
self.param_reduction = param_reduction
self.use_ksm_local = use_ksm_local
self.att_multi = att_multi
self.spatial_freq_decompose = spatial_freq_decompose
self.use_fbm_if_k_in = use_fbm_if_k_in
self.ksm_local_act = ksm_local_act
self.ksm_global_act = ksm_global_act
assert self.ksm_local_act in ['sigmoid', 'tanh']
assert self.ksm_global_act in ['softmax', 'sigmoid', 'tanh']
### Kernel num & Kernel temp setting
if self.kernel_num is None:
self.kernel_num = self.out_channels // 2
kernel_temp = math.sqrt(self.kernel_num * self.param_ratio)
if temp is None:
temp = kernel_temp
if min(self.in_channels, self.out_channels) <= self.use_fdconv_if_c_gt \
or self.kernel_size[0] not in self.use_fdconv_if_k_in:
return
print('*** kernel_num:', self.kernel_num)
self.alpha = min(self.out_channels, self.in_channels) // 2 * self.kernel_num * self.param_ratio / param_reduction
self.KSM_Global = KernelSpatialModulation_Global(self.in_channels, self.out_channels, self.kernel_size[0], groups=self.groups,
temp=temp,
kernel_temp=kernel_temp,
reduction=reduction, kernel_num=self.kernel_num * self.param_ratio,
kernel_att_init=None, att_multi=att_multi, ksm_only_kernel_att=ksm_only_kernel_att,
act_type=self.ksm_global_act,
att_grid=att_grid, stride=self.stride, spatial_freq_decompose=spatial_freq_decompose)
# print(use_fbm_for_stride, self.stride[0] > 1)
if self.kernel_size[0] in use_fbm_if_k_in or (use_fbm_for_stride and self.stride[0] > 1):
self.FBM = FrequencyBandModulation(self.in_channels, **fbm_cfg)
# self.channel_comp = ChannelPool(reduction=16)
if self.use_ksm_local:
self.KSM_Local = KernelSpatialModulation_Local(channel=self.in_channels, kernel_num=1, out_n=int(self.out_channels * self.kernel_size[0] * self.kernel_size[1]) )
self.linear_mode = linear_mode
self.convert2dftweight(convert_param)
def convert2dftweight(self, convert_param):
d1, d2, k1, k2 = self.out_channels, self.in_channels, self.kernel_size[0], self.kernel_size[1]
freq_indices, _ = get_fft2freq(d1 * k1, d2 * k2, use_rfft=True) # 2, d1 * k1 * (d2 * k2 // 2 + 1)
# freq_indices = freq_indices.reshape(2, self.kernel_num, -1)
weight = self.weight.permute(0, 2, 1, 3).reshape(d1 * k1, d2 * k2)
weight_rfft = torch.fft.rfft2(weight, dim=(0, 1)) # d1 * k1, d2 * k2 // 2 + 1
if self.param_reduction < 1:
# freq_indices = freq_indices[:, torch.randperm(freq_indices.size(1), generator=torch.Generator().manual_seed(freq_indices.size(1)))] # 2, indices
# freq_indices = freq_indices[:, :int(freq_indices.size(1) * self.param_reduction)] # 2, indices
num_to_keep = int(freq_indices.size(1) * self.param_reduction)
freq_indices = freq_indices[:, :num_to_keep] # 保留前 k 个最低频的索引
weight_rfft = torch.stack([weight_rfft.real, weight_rfft.imag], dim=-1)
weight_rfft = weight_rfft[freq_indices[0, :], freq_indices[1, :]]
weight_rfft = weight_rfft.reshape(-1, 2)[None, ].repeat(self.param_ratio, 1, 1) / (min(self.out_channels, self.in_channels) // 2)
else:
weight_rfft = torch.stack([weight_rfft.real, weight_rfft.imag], dim=-1)[None, ].repeat(self.param_ratio, 1, 1, 1) / (min(self.out_channels, self.in_channels) // 2) #param_ratio, d1, d2, k*k, 2
if convert_param:
self.dft_weight = nn.Parameter(weight_rfft, requires_grad=True)
del self.weight
else:
if self.linear_mode:
assert self.kernel_size[0] == 1 and self.kernel_size[1] == 1
self.weight = torch.nn.Parameter(self.weight.squeeze(), requires_grad=True)
indices = []
for i in range(self.param_ratio):
indices.append(freq_indices.reshape(2, self.kernel_num, -1)) # paramratio, 2, kernel_num, d1 * k1 * (d2 * k2 // 2 + 1) // kernel_num
self.register_buffer('indices', torch.stack(indices, dim=0), persistent=False)
def get_FDW(self, ):
d1, d2, k1, k2 = self.out_channels, self.in_channels, self.kernel_size[0], self.kernel_size[1]
weight = self.weight.reshape(d1, d2, k1, k2).permute(0, 2, 1, 3).reshape(d1 * k1, d2 * k2)
weight_rfft = torch.fft.rfft2(weight, dim=(0, 1)).contiguous() # d1 * k1, d2 * k2 // 2 + 1
weight_rfft = torch.stack([weight_rfft.real, weight_rfft.imag], dim=-1)[None, ].repeat(self.param_ratio, 1, 1, 1) / (min(self.out_channels, self.in_channels) // 2) #param_ratio, d1, d2, k*k, 2
return weight_rfft
def forward(self, x):
if min(self.in_channels, self.out_channels) <= self.use_fdconv_if_c_gt or self.kernel_size[0] not in self.use_fdconv_if_k_in:
return super().forward(x)
global_x = F.adaptive_avg_pool2d(x, 1)
channel_attention, filter_attention, spatial_attention, kernel_attention = self.KSM_Global(global_x)
if self.use_ksm_local:
# global_x_std = torch.std(x, dim=(-1, -2), keepdim=True)
hr_att_logit = self.KSM_Local(global_x) # b, kn, cin, cout * ratio, k1*k2,
hr_att_logit = hr_att_logit.reshape(x.size(0), 1, self.in_channels, self.out_channels, self.kernel_size[0], self.kernel_size[1])
# hr_att_logit = hr_att_logit + self.hr_cin_bias[None, None, :, None, None, None] + self.hr_cout_bias[None, None, None, :, None, None] + self.hr_spatial_bias[None, None, None, None, :, :]
hr_att_logit = hr_att_logit.permute(0, 1, 3, 2, 4, 5)
if self.ksm_local_act == 'sigmoid':
hr_att = hr_att_logit.sigmoid() * self.att_multi
elif self.ksm_local_act == 'tanh':
hr_att = 1 + hr_att_logit.tanh()
else:
raise NotImplementedError
else:
hr_att = 1
b = x.size(0)
batch_size, in_planes, height, width = x.size()
DFT_map = torch.zeros((b, self.out_channels * self.kernel_size[0], self.in_channels * self.kernel_size[1] // 2 + 1, 2), device=x.device)
kernel_attention = kernel_attention.reshape(b, self.param_ratio, self.kernel_num, -1)
if hasattr(self, 'dft_weight'):
dft_weight = self.dft_weight
else:
dft_weight = self.get_FDW()
# print('get_FDW')
# _t0 = time.perf_counter()
for i in range(self.param_ratio):
# print(i)
# print(DFT_map.device)
indices = self.indices[i]
if self.param_reduction < 1:
w = dft_weight[i].reshape(self.kernel_num, -1, 2)[None]
DFT_map[:, indices[0, :, :], indices[1, :, :]] += torch.stack([w[..., 0] * kernel_attention[:, i], w[..., 1] * kernel_attention[:, i]], dim=-1)
else:
w = dft_weight[i][indices[0, :, :], indices[1, :, :]][None] * self.alpha # 1, kernel_num, -1, 2
# print(w.shape)
DFT_map[:, indices[0, :, :], indices[1, :, :]] += torch.stack([w[..., 0] * kernel_attention[:, i], w[..., 1] * kernel_attention[:, i]], dim=-1)
pass
# print(time.perf_counter() - _t0)
adaptive_weights = torch.fft.irfft2(torch.view_as_complex(DFT_map), dim=(1, 2)).reshape(batch_size, 1, self.out_channels, self.kernel_size[0], self.in_channels, self.kernel_size[1])
adaptive_weights = adaptive_weights.permute(0, 1, 2, 4, 3, 5)
# print(spatial_attention, channel_attention, filter_attention)
if hasattr(self, 'FBM'):
x = self.FBM(x)
# x = self.FBM(x, self.channel_comp(x))
if self.out_channels * self.in_channels * self.kernel_size[0] * self.kernel_size[1] < (in_planes + self.out_channels) * height * width:
# print(channel_attention.shape, filter_attention.shape, hr_att.shape)
aggregate_weight = spatial_attention * channel_attention * filter_attention * adaptive_weights * hr_att
# aggregate_weight = spatial_attention * channel_attention * adaptive_weights * hr_att
aggregate_weight = torch.sum(aggregate_weight, dim=1)
# print(aggregate_weight.abs().max())
aggregate_weight = aggregate_weight.view(
[-1, self.in_channels // self.groups, self.kernel_size[0], self.kernel_size[1]])
x = x.reshape(1, -1, height, width)
output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups * batch_size)
if isinstance(filter_attention, float):
output = output.view(batch_size, self.out_channels, output.size(-2), output.size(-1))
else:
output = output.view(batch_size, self.out_channels, output.size(-2), output.size(-1)) # * filter_attention.reshape(b, -1, 1, 1)
else:
aggregate_weight = spatial_attention * adaptive_weights * hr_att
aggregate_weight = torch.sum(aggregate_weight, dim=1)
if not isinstance(channel_attention, float):
x = x * channel_attention.view(b, -1, 1, 1)
aggregate_weight = aggregate_weight.view(
[-1, self.in_channels // self.groups, self.kernel_size[0], self.kernel_size[1]])
x = x.reshape(1, -1, height, width)
output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups * batch_size)
# if isinstance(filter_attention, torch.FloatTensor):
if isinstance(filter_attention, float):
output = output.view(batch_size, self.out_channels, output.size(-2), output.size(-1))
else:
output = output.view(batch_size, self.out_channels, output.size(-2), output.size(-1)) * filter_attention.view(b, -1, 1, 1)
if self.bias is not None:
output = output + self.bias.view(1, -1, 1, 1)
return output
def profile_module(
self, input: Tensor, *args, **kwargs
):
# TODO: to edit it
b_sz, c, h, w = input.shape
seq_len = h * w
# FFT iFFT
p_ff, m_ff = 0, 5 * b_sz * seq_len * int(math.log(seq_len)) * c
# others
# params = macs = sum([p.numel() for p in self.parameters()])
params = macs = self.hidden_size * self.hidden_size_factor * self.hidden_size * 2 * 2 // self.num_blocks
# // 2 min n become half after fft
macs = macs * b_sz * seq_len
# return input, params, macs
return input, params, macs + m_ff
实验
脚本
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
# 修改为自己的配置文件地址
model = YOLO('./ultralytics/cfg/models/26/yolo26-C3k2_FDConv.yaml')
# 修改为自己的数据集地址
model.train(data='./ultralytics/cfg/datasets/coco8.yaml',
cache=False,
imgsz=640,
epochs=10,
single_cls=False, # 是否是单类别检测
batch=8,
close_mosaic=10,
workers=0,
# optimizer='MuSGD',
optimizer='SGD',
amp=False,
project='runs/train',
name='yolo26-C3k2_FDConv',
)
结果
